Outline of the course

Quantum Dot Solar Cells

Intro to Quantum dots

Schotty Devices

Depleted Heterojunction Devices
Doped PN devices

Increasing light absorption
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How big Is an exciton

Bohr Radius of an Exciton

What is an effective mass?
E=p?/2m

dE/dp=p/m

d?E/dp?=1/m

Effective mass proportional to the

inverse of the curvature of the energy

vS. momentum band diagram
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Are holes or electrons heavier?
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Quantum Size effect, what if the material is ﬂ("'
smaller than the size of the exciton?

1. Energy levels become discrete
2. These discrete levels are size dependent
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How does this look? Part 1
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How does this look? Part 2 -\-\J(IT
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PbS is at the moment quite promising

Reel-to-reel
printing

Flexible
substrates

Quantum dot
Spray solution-phase Ink-jet
painting synthesis printing
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Nature Photonics 6, 133-135 (2012)
doi:10.1038/nphoton.2012.33
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Useful for solar cells? -\\J(IT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

a Perhaps.

a What is the optimum bandgap for a single junction solar
cell?

m Are there any quantum dots in this energy range

What types of device can we make from them?
Schottky structure

Depleted heterojunction

Bulk heterojuction
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Metal Semiconductor Junctions ﬂ(".
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Schottky Junction Solar Cells: What are the
problems? ﬂ(".
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Analysis of the Schottky barrier. (a) Mott—Schottky plots at 1 kHz for devices with a thin (65 nm, red) and thick (400 nm, blue)
NC layer. The capacitance of the thin device is larger and changes little with reverse bias. A linear fit shows that the built-in
potential of the thick device is 0.2 V. Note that smaller NCs yield larger built-in potentials (not shown), as expected from Figure
2a. The inset shows the carrier concentration at the edge of the depletion layer for both devices. The thick device has an
equilibrium depletion width of ~150 nm, while the thin device is fully depleted. (b) J-V characteristics of the thick device. The
photocurrent (JLight — JDark) equals zero at a compensation voltage of 0.2 V.
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Schottky Structures BN

a Fermi-level pinning at the quantum dot metal interface
m Limits Voc

m Easy hole injection at the electron injecting contact, high
backward current limits FF and Voc

m Light comes through the ITO contact, so light absorption is
strongest far away from the region in where photocurrent
generation is best. Limits Jsc
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Depleted Heterojunction == et

m Junction between n-type wide-bandgap semiconductor and

p-type quantum dot solid
s N-type semiconductors = TiO,, ZnO, CdS
s P-type quantum dot solids CdSe, PbS, PbSe

a What limits the device thickness?

Hint:

How are
charges
transported
here?

— T >
-—
___________ EF

Hint:
And here? T o

Quasi-neutral | Depletion region | Quasi-neutral
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Depletion Region

m Electrons diffuse from the n
material into the p

m Holes diffuse from the p
material into the n

m After diffusion, these carriers
can recombine.

m This leaves the dopants in
the n and p regions
uncompensated in a region
with no free carriers

m A field is created in this
depletion region.

2.13
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Depleted Heterojunction

2.14
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(a) Unapertured 1-V response of FTO/porous TiO2/PbS QD/Au photovoltaic devices from three different CQD sizes (device
area 0.03 cm2). (b) Apertured dark and illuminated J-V curves for the champion device yielding short-circuit current of 16.2
mA/cm2, open-circuit voltage of 0.51 V, fill factor of 58% and PCE of 5.1% under 94% of one sun illumination. Here the device
had a 0.06 cm2 contact area that was apertured down to a 0.05 cm2 device area to eliminate any lateral collection of
photogenerated carriers. (c) Apertured external quantum efficiency and absorption spectra for a champion device based on PbS
CQDs having a bandgap of 1.3 eV (~960 nm first excitonic peak).
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J-V characteristics of typical PbS QD Schottky (red) and PbS QD/CdS heterojunction (blue) devices measured in the dark and

under AM1.5G simulated solar illumination.

Published in: Liang-Yi Chang; Richard R. Lunt; Patrick R. Brown; Vladimir Bulovi¢; Moungi G. Bawendi; Nano Lett. 2013, 13, 994-999

DOI: 10.1021/nl3041417
Copyright © 2013 American Chemical Society
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How wide is the depletion region -\-\J(IT

m Depends on the density of electrons and holes in the n and
p type semiconductor.
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Capacitance—-voltage curves of (a) the champion TiO2/1.3 eV QD PV/Au device. The impedance was acquired at 1 kHz with a
signal amplitude of 10 mV, and is represented here in terms of equivalent parallel resistance (Rp) and capacitance (Cp) for a
device with contact area of 0.06 cm2. (b) a FTO/compact TiO2/1.3 eV PbS QD/Au structure. Mott—Schottky analysis was
performed to arrive at approximate values for free carriers in 1.3 eV PbS QD films.

Published in: Andras G. Pattantyus-Abraham; lllan J. Kramer; Aaron R. Barkhouse; Xihua Wang; Gerasimos Konstantatos; Ratan Debnath;

Larissa Levina; Ines Raabe; Mohammad K. Nazeeruddin; Michael Gratzel; Edward H. Sargent; ACS Nano 2010, 4, 3374-3380
DOI: 10.1021/nn100335¢g
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Minority carrier diffusion length -\\A(IT
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How do we measure the mobility?

If mobility is known, then we can measure diffusion length in order to get lifetime
Or measure lifetime in order to get diffusion length.
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Measurement of mobility. Time of Flight ﬂ(".
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Fig. 4 Typical transient photocurrents: a non-dispersive; b dispersive. Inset double logarithmic plot

Opt Quant Electron (2009) 41:69-89
DOIT 10.1007/s11082-009-9323-0

Charge mobility measurement techniques
in organic semiconductors

Sanjay Tiwari - N. C. Greenham
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Measurement of mobility: CELIV ﬁ(".

Opt Quant Electron (2009) 41:69-89
DOI 10.1007/s11082-009-9323-0

Charge mobility measurement techniques

Can measure thin sample n organic semiconductors
without transparent i R e
electrodes. tmax = d+/2/3A
Dispersive transport no _ \ “
problem. éinm
100 Aj ] 7
If both hole and electrons ol 5 =
present there are 2 peaks. = | !
@
» t
Further measurements are E ol Bl b, = 10H, |
needed to determine which i(0) oz
peak corresponds to which _ -
carrier _ (S .
0 ¥ | |
0 20 40
Time

Fig. 8 Calculated CELIV transient
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Carrier Lifetime: Transient Photovoltage
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Measurement of Minority Carrier Lifetime in Solar

Cells from Photo-Induced Open-Circuit
Voltage Decay

JOHN E. MAHAN, THOMAS W. EKSTEDT, ROBERT 1. FRANK, MEMBER, IEEE, AND ROY KAPLOW
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What fraction of light gets absorbed in the cell ﬂ(".

m Depletion region + minority carrier diffusion length gives
roughly 300 nm
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Karlsruhe In:

Bulk Heterojunction-type

a What should the spacing between the TiO, pillars be?

a Hint: remember the exciton diffusion length from organic
semiconductors?

a Hint 2: dots are not to scale, there could be many between the
pillars.

2.24 Light Technology Institute
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Hint 1 was a Red Herring! =LA

m Remember the exciton diffusion length was around 10 nm
In the organic solar cells? Good.

m But that is irrelevant here.

m We just covered the relevant distance is the depletion
region plus the minority carrier diffusion length.
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m ZnO wires transformed into TiO,, leads to efficiency of
7.2%
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Figure 4. a) Double-pass optical absorption spectra of typical planar and NWN devices.
b) External quantum efficiency spectra of the same devices. c) Capacitance™ vs voltage curves
for the NWN device showing that the device is substantially fully depleted even under slight
forward bias. d) -V curves under AM1.5 illumination of typical planar and NWN devices. The
optimized NWN device shows the same open-circuit voltage as the planar counterpart, and a
considerably increased photocurrent.
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Band Bending

2.27

Band bending refers to the local changes in the energy offset of a semiconductor's band structure
near a junction, due to space charge effects. Because the common way to visualize the electron
energy states and Fermi level in a material is to draw bands on an energy vs. distance plot (band
diagram), band bending refers to bending observed in these diagrams and does not correspond to any
physical (spatial) bending.

The primary principle underlying band bending inside a semiconductor is space charge: a local
imbalance in charge neutrality. Poisson's equation gives a curvature to the bands wherever there is an
imbalance in charge neutrality. Why is there charge imbalance? Although one expects a
homogeneous material to be charge neutral everywhere (since it must be charge neutral on average)
there is no such requirement for interfaces. Practically all types of interface develop a charge
imbalance, though for different reasons:

At the junction of two different types of the same semiconductor (e.g., p-n junction) the bands vary
continuously since the dopants are sparsely distributed and only perturb the system.

At the junction of two different semiconductors there is a sharp shift in band energies from one

material to the other; the band alignment at the junction (e.g., the difference in conduction band
energies) is fixed.

At the junction of a semiconductor and metal, the bands of the semiconductor are pinned to the
metal's Fermi level.

At the junction of a conductor and vacuum, the vacuum level (from vacuum electrostatic potential) is
set by the material's work function and Fermi level. This also (usually) applies for the junction of a
conductor to an insulator.

Light Technology Institute
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Junction between two semiconductors
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Make Fermi ener gies identic al
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Discontinuities at the interface
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This can be a problem at the PbS TiO, Interface ﬂ(".
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Where next? -\\-‘(IT

2.30

Discontinuities at the interface arise due to the different
bandgaps of the semicondutors

These discontinuities can cause trapping or decrease the
open circuit voltage

It would be nice to get rid of such discontinuities, and
control the width of the depletion region.

How could this be done?

Light Technology Institute



Quantum Dot Doping

Figure 1. (a) Electron transfer from a remote cation
(potassium) HOMO to a CQD conduction band, leading to
n-type behavior; (b) transfer of electron from a CQD valence
band to a remote anion (iodide) HOMO leading to p-type
behavior; (c) atomic depiction of the scenario in part b; and
(d) effect of iodine substitution for sulfur within the struc-

ture, leading to n-type character.
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Graded PN junctions using QDs

—Ag
- AZO

I, n* PbS
— B, in Nyn Pbs‘
— OH-, p** PbS
—ITO
— Glass
d Depletion region e Depletion region f Depletion region
~270 nm ~270 nm ~330 nm

1 T T T I I 1 I
0.0 01 0.2 03 04 05 0.0 01 0.2 03 0.0 01 0.2 03 0.4 0.5 06
Film thickness (um) Film thickness (um) Film thickness (um)

Air-stable n-type colloidal quantum dot solids

Zhijun Ning', Oleksandr Voznyy', Jun Pan?, Sjoerd Hoogland', Valerio Adinolfi', Jixian Xu', Min Li?, i
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Light scattering to increase absorption ﬂ(".

2 Spin-casting Metal ITO+TiO,
of spheres O, plasma evaporation RIE etch deposition
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sphere mask
liftoff removal
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structured p_lanar
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| ead Halide Perovskites AN

a Compared to quantum dot solar cells
m Absorption length and carrier diffusion length comparable

a Absorption length ~100 nm electron/hole diffusion lengths
reported up to 1 ym
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QD vs Perovskite
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